Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis | Science

Cassandra Burdziak https://orcid.org/0000-0001-6008-7783, Direna Alonso-Curbelo https://orcid.org/0000-0001-6674-3059, Thomas Walle https://orcid.org/0000-0003-4835-955X, José Reyes https://orcid.org/0000-0002-1133-4933, Francisco M. Barriga, Doron Haviv, Yubin Xie https://orcid.org/0000-0003-2542-2544, Zhen Zhao https://orcid.org/0000-0001-5271-4759, Chujun Julia Zhao https://orcid.org/0000-0002-9792-4722, Hsuan-An Chen https://orcid.org/0000-0002-8979-3670, Ojasvi Chaudhary, Ignas Masilionis https://orcid.org/0000-0001-7937-9014, Zi-Ning Choo, Vianne Gao, Wei Luan, Alexandra Wuest, Yu-Jui Ho https://orcid.org/0000-0002-7540-024X, Yuhong Wei https://orcid.org/0000-0003-2064-4826, Daniela F. Quail https://orcid.org/0000-0002-6969-3250, Richard Koche https://orcid.org/0000-0002-6820-5083, Linas Mazutis https://orcid.org/0000-0002-5552-6427, Ronan Chaligné https://orcid.org/0000-0003-4332-3291, Tal Nawy https://orcid.org/0000-0003-3720-3699, Scott W. Lowe https://orcid.org/0000-0002-5284-9650 [email protected], and Dana Pe’er https://orcid.org/0000-0002-9259-8817 [email protected]Authors Info & Affiliations
Science
12 May 2023
Vol 380, Issue 6645
Editor’s summary
The development of pancreatic cancer involves a complex interplay between pancreatic lesions and the surrounding tissue microenvironment. Burdziak et al. performed an in-depth analysis of the evolution of pancreatic tumors. Using several model systems, including newly developed computational methods, tumor progression stages leading to pancreatic adenocarcinoma were predicted based upon communication gene modules. Tissue remodeling was traced from a healthy pancreas to an inflamed state, the premalignant stage, and then to full-blown malignancy and distant metastasis. Epigenetic plasticity in early progenitor–like epithelial cells primed pancreatic cells for neoplastic transformation. Plasticity was associated with the remodeling of accessible chromatin close to cell-cell signaling genes and an interleukin-33–mediated inflammatory feedback loop between epithelial and immune cells. —Priscilla N. Kelly
Structured Abstract
INTRODUCTION
Virtually all cancers begin with genetic alterations in healthy cells, but mounting evidence suggests that nongenetic events such as environmental signaling play a crucial role in unleashing tumorigenesis. In the pancreas, epithelial cells harboring an activating mutation in the Kras proto-oncogene can remain phenotypically normal until an inflammatory event that drives cellular plasticity and tissue remodeling. The inflammation-driven molecular, cellular, and tissue changes that precede and direct tumor formation remain poorly understood.
RATIONALE
Understanding tumorigenesis requires a high-resolution view of events spanning cancer progression. We leveraged genetically engineered mouse models (GEMMs), single-cell genomics (RNA sequencing and assay for transposase-accessible chromatin sequencing), and imaging technologies to measure pancreatic epithelial cell states across physiological, premalignant, and malignant stages. To analyze this rich and complex dataset, we developed computational and functional approaches to characterize epigenetic plasticity and to infer cell-cell communication impacts on tissue remodeling.
RESULTS
Our data revealed that early in tumorigenesis, Kras-mutant cells are capable of acquiring multiple highly reproducible cell states that are undetectable in normal or regenerating pancreata. Several such states align with experimentally validated cells of origin of neoplastic lesions, some of which display a high degree of plasticity upon inflammatory insult. These diverse Kras-mutant cell populations are defined by distinct chromatin accessibility patterns and undergo inflammation-driven cell fate transitions that precede preneoplastic and premalignant lesion formation. Furthermore, a subset of early Kras-mutant cell states exhibit marked similarity to either benign or malignant fates that emerge weeks to months later; for instance, Kras-mutant Nestin-positive progenitor-like cells display accessible chromatin near genes active in malignant tumors.
We defined and quantified epigenetic plasticity as the diversity in transcriptional phenotypes that is enabled or restricted by a given epigenetic accessibility landscape. These plastic cell states are enriched for open chromatin near cell-cell communication genes encoding ligands and cell-surface receptors, suggesting an increased propensity to communicate with the microenvironment. Given the rapid remodeling of both the epithelial and immune compartments during inflammation, we hypothesize that this epigenetically enabled communication is a major driver of tumorigenesis. We found that the premalignant epithelium displays extraordinary modularity with respect to communication gene coexpression patterns, with distinct cell subpopulations each expressing a unique set of receptors and ligands that define the nature of incoming and outgoing signals that they can receive and send.
Through the development of Calligraphy, an algorithm that utilizes this receptor-ligand modularity to robustly infer the cell-cell communication underlying tissue remodeling, we showed that the enhanced signaling repertoire of early neoplastic tissue endows specific plastic epithelial populations with greater capability for cross-talk, including numerous communication routes with immune populations. As one example, we identified a feedback loop between inflammation-driven Kras-mutant epithelial and immune cell states involving interleukin-33 (IL-33), which was previously implicated in pancreatic tumorigenesis. Using a new GEMM that enables spatiotemporally controlled suppression of epithelial Il33 expression during mutant Kras-initiated neoplasia, we functionally demonstrated that the loop initiated by epithelial IL-33 directs exit from a highly plastic, inflammation-induced epithelial state, enabling progression toward typical neoplasia.
CONCLUSION
Multimodal single-cell profiling of tumorigenesis in mouse models identified the cellular and tissue determinants of pancreatic cancer initiation, and a rigorous quantification of plasticity enabled the discovery of plasticity-associated gene programs. We found that Kras-mutant subpopulations markedly increase epigenetic plasticity upon inflammation, reshaping their communication potential with immune cells and establishing aberrant cell-cell communication loops that drive their progression toward neoplastic lesions.
Abstract
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Materials
This PDF file includes:
Materials and Methods
Figs. S1 to S13
Tables S2, S8, S9, S11 to S13, S15 to S17
References (71–101)
Other Supplementary Material for this manuscript includes the following:
Tables S1, S3 to S7, S10, S14, and S18
MDAR Reproducibility Checklist
References and Notes
1
B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz Jr., K. W. Kinzler, Cancer genome landscapes. Science339, 1546–1558 (2013).
2
I. Martincorena, A. Roshan, M. Gerstung, P. Ellis, P. Van Loo, S. McLaren, D. C. Wedge, A. Fullam, L. B. Alexandrov, J. M. Tubio, L. Stebbings, A. Menzies, S. Widaa, M. R. Stratton, P. H. Jones, P. J. Campbell, High burden and pervasive positive selection of somatic mutations in normal human skin. Science348, 880–886 (2015).
3
N. Wijewardhane, L. Dressler, F. D. Ciccarelli, Normal somatic mutations in cancer transformation. Cancer Cell39, 125–129 (2021).
4
D. Hanahan, Hallmarks of cancer: New dimensions. Cancer Discov.12, 31–46 (2022).
5
A. S. Nam, R. Chaligne, D. A. Landau, Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet.22, 3–18 (2021).
6
C. Guerra, A. J. Schuhmacher, M. Cañamero, P. J. Grippo, L. Verdaguer, L. Pérez-Gallego, P. Dubus, E. P. Sandgren, M. Barbacid, Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell11, 291–302 (2007).
7
C. Carrière, A. L. Young, J. R. Gunn, D. S. Longnecker, M. Korc, Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. Biochem. Biophys. Res. Commun.382, 561–565 (2009).
8
A. B. Lowenfels, P. Maisonneuve, E. P. DiMagno, Y. Elitsur, L. K. Gates Jr., J. Perrault, D. C. Whitcomb; International Hereditary Pancreatitis Study Group, Hereditary pancreatitis and the risk of pancreatic cancer. J. Natl. Cancer Inst.89, 442–446 (1997).
9
L. M. Coussens, Z. Werb, Inflammation and cancer. Nature420, 860–867 (2002).
10
V. Giroux, A. K. Rustgi, Metaplasia: Tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat. Rev. Cancer17, 594–604 (2017).
11
R. Maddipati, B. Z. Stanger, Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov.5, 1086–1097 (2015).
12
S. R. Torborg, Z. Li, J. E. Chan, T. Tammela, Cellular and molecular mechanisms of plasticity in cancer. Trends Cancer8, 735–746 (2022).
13
W. A. Flavahan, E. Gaskell, B. E. Bernstein, Epigenetic plasticity and the hallmarks of cancer. Science357, eaal2380 (2017).
14
M. A. Dawson, The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science355, 1147–1152 (2017).
15
W. Xie, M. D. Schultz, R. Lister, Z. Hou, N. Rajagopal, P. Ray, J. W. Whitaker, S. Tian, R. D. Hawkins, D. Leung, H. Yang, T. Wang, A. Y. Lee, S. A. Swanson, J. Zhang, Y. Zhu, A. Kim, J. R. Nery, M. A. Urich, S. Kuan, C.-A. Yen, S. Klugman, P. Yu, K. Suknuntha, N. E. Propson, H. Chen, L. E. Edsall, U. Wagner, Y. Li, Z. Ye, A. Kulkarni, Z. Xuan, W.-Y. Chung, N. C. Chi, J. E. Antosiewicz-Bourget, I. Slukvin, R. Stewart, M. Q. Zhang, W. Wang, J. A. Thomson, J. R. Ecker, B. Ren, Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell153, 1134–1148 (2013).
16
C. A. Gifford, M. J. Ziller, H. Gu, C. Trapnell, J. Donaghey, A. Tsankov, A. K. Shalek, D. R. Kelley, A. A. Shishkin, R. Issner, X. Zhang, M. Coyne, J. L. Fostel, L. Holmes, J. Meldrim, M. Guttman, C. Epstein, H. Park, O. Kohlbacher, J. Rinn, A. Gnirke, E. S. Lander, B. E. Bernstein, A. Meissner, Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell153, 1149–1163 (2013).
17
L. M. LaFave, V. K. Kartha, S. Ma, K. Meli, I. Del Priore, C. Lareau, S. Naranjo, P. M. K. Westcott, F. M. Duarte, V. Sankar, Z. Chiang, A. Brack, T. Law, H. Hauck, A. Okimoto, A. Regev, J. D. Buenrostro, T. Jacks, Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell38, 212–228.e13 (2020).
18
N. D. Marjanovic, M. Hofree, J. E. Chan, D. Canner, K. Wu, M. Trakala, G. G. Hartmann, O. C. Smith, J. Y. Kim, K. V. Evans, A. Hudson, O. Ashenberg, C. B. M. Porter, A. Bejnood, A. Subramanian, K. Pitter, Y. Yan, T. Delorey, D. R. Phillips, N. Shah, O. Chaudhary, A. Tsankov, T. Hollmann, N. Rekhtman, P. P. Massion, J. T. Poirier, L. Mazutis, R. Li, J.-H. Lee, A. Amon, C. M. Rudin, T. Jacks, A. Regev, T. Tammela, Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell38, 229–246.e13 (2020).
19
P. Storz, Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol.14, 296–304 (2017).
20
C. Guerra, M. Collado, C. Navas, A. J. Schuhmacher, I. Hernández-Porras, M. Cañamero, M. Rodriguez-Justo, M. Serrano, M. Barbacid, Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell19, 728–739 (2011).
21
S. Y. G. Friedlander, G. C. Chu, E. L. Snyder, N. Girnius, G. Dibelius, D. Crowley, E. Vasile, R. A. DePinho, T. Jacks, Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell16, 379–389 (2009).
22
J. P. Morris IV, D. A. Cano, S. Sekine, S. C. Wang, M. Hebrok, β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest.120, 508–520 (2010).
23
D. Alonso-Curbelo, Y.-J. Ho, C. Burdziak, J. L. V. Maag, J. P. Morris 4th, R. Chandwani, H.-A. Chen, K. M. Tsanov, F. M. Barriga, W. Luan, N. Tasdemir, G. Livshits, E. Azizi, J. Chun, J. E. Wilkinson, L. Mazutis, S. D. Leach, R. Koche, D. Pe’er, S. W. Lowe, A gene-environment-induced epigenetic program initiates tumorigenesis. Nature590, 642–648 (2021).
24
E. Del Poggetto, I.-L. Ho, C. Balestrieri, E.-Y. Yen, S. Zhang, F. Citron, R. Shah, D. Corti, G. R. Diaferia, C.-Y. Li, S. Loponte, F. Carbone, Y. Hayakawa, G. Valenti, S. Jiang, L. Sapio, H. Jiang, P. Dey, S. Gao, A. K. Deem, S. Rose-John, W. Yao, H. Ying, A. D. Rhim, G. Genovese, T. P. Heffernan, A. Maitra, T. C. Wang, L. Wang, G. F. Draetta, A. Carugo, G. Natoli, A. Viale, Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science373, eabj0486 (2021).
25
Y. Li, Y. He, J. Peng, Z. Su, Z. Li, B. Zhang, J. Ma, M. Zhuo, D. Zou, X. Liu, X. Liu, W. Wang, D. Huang, M. Xu, J. Wang, H. Deng, J. Xue, W. Xie, X. Lan, M. Chen, Y. Zhao, W. Wu, C. J. David, Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. Nat. Cancer2, 49–65 (2021).
26
Y. Kawaguchi, B. Cooper, M. Gannon, M. Ray, R. J. MacDonald, C. V. E. Wright, The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet.32, 128–134 (2002).
27
Materials and methods are available as supplementary materials.
28
C. B. Westphalen, Y. Takemoto, T. Tanaka, M. Macchini, Z. Jiang, B. W. Renz, X. Chen, S. Ormanns, K. Nagar, Y. Tailor, R. May, Y. Cho, S. Asfaha, D. L. Worthley, Y. Hayakawa, A. M. Urbanska, M. Quante, M. Reichert, J. Broyde, P. S. Subramaniam, H. Remotti, G. H. Su, A. K. Rustgi, R. A. Friedman, B. Honig, A. Califano, C. W. Houchen, K. P. Olive, T. C. Wang, Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell18, 441–455 (2016).
29
S. Sinha, Y.-Y. Fu, A. Grimont, M. Ketcham, K. Lafaro, J. A. Saglimbeni, G. Askan, J. M. Bailey, J. P. Melchor, Y. Zhong, M. G. Joo, O. Grbovic-Huezo, I.-H. Yang, O. Basturk, L. Baker, Y. Park, R. C. Kurtz, D. Tuveson, S. D. Leach, P. J. Pasricha, PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res.77, 1868–1879 (2017).
30
A. D. Rhim, E. T. Mirek, N. M. Aiello, A. Maitra, J. M. Bailey, F. McAllister, M. Reichert, G. L. Beatty, A. K. Rustgi, R. H. Vonderheide, S. D. Leach, B. Z. Stanger, EMT and dissemination precede pancreatic tumor formation. Cell148, 349–361 (2012).
31
J. L. Kopp, G. von Figura, E. Mayes, F.-F. Liu, C. L. Dubois, J. P. Morris 4th, F. C. Pan, H. Akiyama, C. V. E. Wright, K. Jensen, M. Hebrok, M. Sander, Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell22, 737–750 (2012).
32
J. Peng, B.-F. Sun, C.-Y. Chen, J.-Y. Zhou, Y.-S. Chen, H. Chen, L. Liu, D. Huang, J. Jiang, G.-S. Cui, Y. Yang, W. Wang, D. Guo, M. Dai, J. Guo, T. Zhang, Q. Liao, Y. Liu, Y.-L. Zhao, D.-L. Han, Y. Zhao, Y.-G. Yang, W. Wu, Author Correction: Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res.29, 777 (2019).
33
R. R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal.21, 5–30 (2006).
34
S. Yang, P. He, J. Wang, A. Schetter, W. Tang, N. Funamizu, K. Yanaga, T. Uwagawa, A. R. Satoskar, J. Gaedcke, M. Bernhardt, B. M. Ghadimi, M. M. Gaida, F. Bergmann, J. Werner, T. Ried, N. Hanna, H. R. Alexander, S. P. Hussain, A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res.76, 3838–3850 (2016).
35
R. A. Moffitt, R. Marayati, E. L. Flate, K. E. Volmar, S. G. H. Loeza, K. A. Hoadley, N. U. Rashid, L. A. Williams, S. C. Eaton, A. H. Chung, J. K. Smyla, J. M. Anderson, H. J. Kim, D. J. Bentrem, M. S. Talamonti, C. A. Iacobuzio-Donahue, M. A. Hollingsworth, J. J. Yeh, Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet.47, 1168–1178 (2015).
36
D. L. Gibbons, C. J. Creighton, Pan-cancer survey of epithelial-mesenchymal transition markers across the Cancer Genome Atlas. Dev. Dyn.247, 555–564 (2018).
37
R. Jahan, K. Ganguly, L. M. Smith, P. Atri, J. Carmicheal, Y. Sheinin, S. Rachagani, G. Natarajan, R. E. Brand, M. A. Macha, P. M. Grandgenett, S. Kaur, S. K. Batra, Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer. EBioMedicine42, 375–385 (2019).
38
J.-S. Roe, C.-I. Hwang, T. D. D. Somerville, J. P. Milazzo, E. J. Lee, B. Da Silva, L. Maiorino, H. Tiriac, C. M. Young, K. Miyabayashi, D. Filippini, B. Creighton, R. A. Burkhart, J. M. Buscaglia, E. J. Kim, J. L. Grem, A. J. Lazenby, J. A. Grunkemeyer, M. A. Hollingsworth, P. M. Grandgenett, M. Egeblad, Y. Park, D. A. Tuveson, C. R. Vakoc, Enhancer reprogramming promotes pancreatic cancer metastasis. Cell170, 875–888.e20 (2017).
39
M. Lange, V. Bergen, M. Klein, M. Setty, B. Reuter, M. Bakhti, H. Lickert, M. Ansari, J. Schniering, H. B. Schiller, D. Pe’er, F. J. Theis, CellRank for directed single-cell fate mapping. Nat. Methods19, 159–170 (2022).
40
V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol.38, 1408–1414 (2020).
41
G. La Manno, R. Soldatov, A. Zeisel, E. Braun, H. Hochgerner, V. Petukhov, K. Lidschreiber, M. E. Kastriti, P. Lönnerberg, A. Furlan, J. Fan, L. E. Borm, Z. Liu, D. van Bruggen, J. Guo, X. He, R. Barker, E. Sundström, G. Castelo-Branco, P. Cramer, I. Adameyko, S. Linnarsson, P. V. Kharchenko, RNA velocity of single cells. Nature560, 494–498 (2018).
42
M. Ioannou, I. Serafimidis, L. Arnes, L. Sussel, S. Singh, V. Vasiliou, A. Gavalas, ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev. Biol.374, 153–163 (2013).
43
E. Mameishvili, I. Serafimidis, S. Iwaszkiewicz, M. Lesche, S. Reinhardt, N. Bölicke, M. Büttner, D. Stellas, A. Papadimitropoulou, M. Szabolcs, K. Anastassiadis, A. Dahl, F. Theis, A. Efstratiadis, A. Gavalas, Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A.116, 20679–20688 (2019).
44
C. Carrière, E. S. Seeley, T. Goetze, D. S. Longnecker, M. Korc, The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc. Natl. Acad. Sci. U.S.A.104, 4437–4442 (2007).
45
C. Carrière, A. L. Young, J. R. Gunn, D. S. Longnecker, M. Korc, Acute pancreatitis accelerates initiation and progression to pancreatic cancer in mice expressing oncogenic Kras in the nestin cell lineage. PLOS ONE6, e27725 (2011).
46
Y. Baran, A. Bercovich, A. Sebe-Pedros, Y. Lubling, A. Giladi, E. Chomsky, Z. Meir, M. Hoichman, A. Lifshitz, A. Tanay, MetaCell: Analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol.20, 206 (2019).
47
S. Persad, Z.-N. Choo, C. Dien, I. Masilionis, R. Chaligné, T. Nawy, C. C. Brown, I. Pe’er, M. Setty, D. Pe’er, SEACells: Inference of transcriptional and epigenomic cellular states from single-cell genomics data. bioRxiv 2022.04.02.486748 [Preprint] (2022); https://doi.org/10.1101/2022.04.02.486748.
48
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.102, 15545–15550 (2005).
49
Y. Pylayeva-Gupta, K. E. Lee, C. H. Hajdu, G. Miller, D. Bar-Sagi, Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell21, 836–847 (2012).
50
M. Efremova, M. Vento-Tormo, S. A. Teichmann, R. Vento-Tormo, CellPhoneDB: Inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc.15, 1484–1506 (2020).
51
O. Strobel, Y. Dor, J. Alsina, A. Stirman, G. Lauwers, A. Trainor, C. F.-D. Castillo, A. L. Warshaw, S. P. Thayer, In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology133, 1999–2009 (2007).
52
Y. Schlesinger, O. Yosefov-Levi, D. Kolodkin-Gal, R. Z. Granit, L. Peters, R. Kalifa, L. Xia, A. Nasereddin, I. Shiff, O. Amran, Y. Nevo, S. Elgavish, K. Atlan, G. Zamir, O. Parnas, Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells’ heterogeneity. Nat. Commun.11, 4516 (2020).
53
H. Gonzalez, C. Hagerling, Z. Werb, Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev.32, 1267–1284 (2018).
54
U. Alon, Network motifs: Theory and experimental approaches. Nat. Rev. Genet.8, 450–461 (2007).
55
S. Das, B. Shapiro, E. A. Vucic, S. Vogt, D. Bar-Sagi, Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res.80, 1088–1101 (2020).
56
A. Alam, E. Levanduski, P. Denz, H. S. Villavicencio, M. Bhatta, L. Alhorebi, Y. Zhang, E. C. Gomez, B. Morreale, S. Senchanthisai, J. Li, S. G. Turowski, S. Sexton, S. J. Sait, P. K. Singh, J. Wang, A. Maitra, P. Kalinski, R. A. DePinho, H. Wang, W. Liao, S. I. Abrams, B. H. Segal, P. Dey, Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell40, 153–167.e11 (2022).
57
L. Y. Drake, H. Kita, IL-33: Biological properties, functions, and roles in airway disease. Immunol. Rev.278, 173–184 (2017).
58
P. Andersson, Y. Yang, K. Hosaka, Y. Zhang, C. Fischer, H. Braun, S. Liu, G. Yu, S. Liu, R. Beyaert, M. Chang, Q. Li, Y. Cao, Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI Insight3, e122375 (2018).
59
A. Velez-Delgado, K. L. Donahue, K. L. Brown, W. Du, V. Irizarry-Negron, R. E. Menjivar, E. L. Lasse Opsahl, N. G. Steele, S. The, J. Lazarus, V. R. Sirihorachai, W. Yan, S. B. Kemp, S. A. Kerk, M. Bollampally, S. Yang, M. K. Scales, F. R. Avritt, F. Lima, C. A. Lyssiotis, A. Rao, H. C. Crawford, F. Bednar, T. L. Frankel, B. L. Allen, Y. Zhang, M. Pasca di Magliano, Extrinsic KRAS signaling shapes the pancreatic microenvironment through fibroblast reprogramming. Cell. Mol. Gastroenterol. Hepatol.13, 1673–1699 (2022).
60
E. Dann, N. C. Henderson, S. A. Teichmann, M. D. Morgan, J. C. Marioni, Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).
61
M. Setty, V. Kiseliovas, J. Levine, A. Gayoso, L. Mazutis, D. Pe’er, Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol.37, 451–460 (2019).
62
J. M. Bailey, A. M. Hendley, K. J. Lafaro, M. A. Pruski, N. C. Jones, J. Alsina, M. Younes, A. Maitra, F. McAllister, C. A. Iacobuzio-Donahue, S. D. Leach, p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene35, 4282–4288 (2016).
63
A. Malinova, L. Veghini, F. X. Real, V. Corbo, Cell lineage infidelity in PDAC progression and therapy resistance. Front. Cell Dev. Biol.9, 795251 (2021).
64
E. Azizi, A. J. Carr, G. Plitas, A. E. Cornish, C. Konopacki, S. Prabhakaran, J. Nainys, K. Wu, V. Kiseliovas, M. Setty, K. Choi, R. M. Fromme, P. Dao, P. T. McKenney, R. C. Wasti, K. Kadaveru, L. Mazutis, A. Y. Rudensky, D. Pe’er, Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell174, 1293–1308.e36 (2018).
65
J. M. Granja, M. R. Corces, S. E. Pierce, S. T. Bagdatli, H. Choudhry, H. Y. Chang, W. J. Greenleaf, ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet.53, 403–411 (2021).
66
N. F. Greenwald, G. Miller, E. Moen, A. Kong, A. Kagel, T. Dougherty, C. C. Fullaway, B. J. McIntosh, K. X. Leow, M. S. Schwartz, C. Pavelchek, S. Cui, I. Camplisson, O. Bar-Tal, J. Singh, M. Fong, G. Chaudhry, Z. Abraham, J. Moseley, S. Warshawsky, E. Soon, S. Greenbaum, T. Risom, T. Hollmann, S. C. Bendall, L. Keren, W. Graf, M. Angelo, D. Van Valen, Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol.40, 555–565 (2022).
67
N. M. Krah, J.-P. De La O, G. H. Swift, C. Q. Hoang, S. G. Willet, F. Chen Pan, G. M. Cash, M. P. Bronner, C. V. Wright, R. J. MacDonald, L. C. Murtaugh, The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. eLife4, e07125 (2015).
68
C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, K. H. Buetow, PID: The Pathway Interaction Database. Nucleic Acids Res.37, D674–D679 (2009).
69
D. van Dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail, A. J. Carr, C. Burdziak, K. R. Moon, C. L. Chaffer, D. Pattabiraman, B. Bierie, L. Mazutis, G. Wolf, S. Krishnaswamy, D. Pe’er, Recovering gene interactions from single-cell data using data diffusion. Cell174, 716–729.e27 (2018).
71
M. Saborowski, A. Saborowski, J. P. Morris 4th, B. Bosbach, L. E. Dow, J. Pelletier, D. S. Klimstra, S. W. Lowe, A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev.28, 85–97 (2014).
72
C. Fellmann, T. Hoffmann, V. Sridhar, B. Hopfgartner, M. Muhar, M. Roth, D. Y. Lai, I. A. M. Barbosa, J. S. Kwon, Y. Guan, N. Sinha, J. Zuber, An optimized microRNA backbone for effective single-copy RNAi. Cell Rep.5, 1704–1713 (2013).
73
L. E. Dow, P. K. Premsrirut, J. Zuber, C. Fellmann, K. McJunkin, C. Miething, Y. Park, R. A. Dickins, G. J. Hannon, S. W. Lowe, A pipeline for the generation of shRNA transgenic mice. Nat. Protoc.7, 374–393 (2012).
74
M. Gertsenstein, L. M. J. Nutter, T. Reid, M. Pereira, W. L. Stanford, J. Rossant, A. Nagy, Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLOS ONE5, e11260 (2010).
75
E. L. Jackson, N. Willis, K. Mercer, R. T. Bronson, D. Crowley, R. Montoya, T. Jacks, D. A. Tuveson, Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev.15, 3243–3248 (2001).
76
S. R. Hingorani, L. Wang, A. S. Multani, C. Combs, T. B. Deramaudt, R. H. Hruban, A. K. Rustgi, S. Chang, D. A. Tuveson, Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell7, 469–483 (2005).
77
C. Beard, K. Hochedlinger, K. Plath, A. Wutz, R. Jaenisch, Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis44, 23–28 (2006).
78
L. E. Dow, Z. Nasr, M. Saborowski, S. H. Ebbesen, E. Manchado, N. Tasdemir, T. Lee, J. Pelletier, S. W. Lowe, Conditional reverse tet-transactivator mouse strains for the efficient induction of TRE-regulated transgenes in mice. PLOS ONE9, e95236 (2014).
79
J. R. Moffitt, D. Bambah-Mukku, S. W. Eichhorn, E. Vaughn, K. Shekhar, J. D. Perez, N. D. Rubinstein, J. Hao, A. Regev, C. Dulac, X. Zhuang, Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science362, eaau5324 (2018).
80
J. R. Moffitt, J. Hao, G. Wang, K. H. Chen, H. P. Babcock, X. Zhuang, High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. U. S. A.113, 11046–11051 (2016).
81
G. Wang, J. R. Moffitt, X. Zhuang, Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep.8, 4847 (2018).
82
L. Farack, S. Itzkovitz, Protocol for single-molecule fluorescence in situ hybridization for intact pancreatic tissue. STAR Protoc.1, 100007 (2020).
83
J. R. Moffitt, J. Hao, D. Bambah-Mukku, T. Lu, C. Dulac, X. Zhuang, High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. U. S .A.113, 14456–14461 (2016).
84
J.-R. Lin, M. Fallahi-Sichani, P. K. Sorger, Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun.6, 8390 (2015).
85
K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, X. Zhuang, Spatially resolved, highly multiplexed RNA profiling in single cells. Science348, aaa6090 (2015).
86
J. H. Levine, E. F. Simonds, S. C. Bendall, K. L. Davis, A. D. Amir, M. D. Tadmor, O. Litvin, H. G. Fienberg, A. Jager, E. R. Zunder, R. Finck, A. L. Gedman, I. Radtke, J. R. Downing, D. Pe’er, G. P. Nolan, Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell162, 184–197 (2015).
87
A. T. Satpathy, J. M. Granja, K. E. Yost, Y. Qi, F. Meschi, G. P. McDermott, B. N. Olsen, M. R. Mumbach, S. E. Pierce, M. R. Corces, P. Shah, J. C. Bell, D. Jhutty, C. M. Nemec, J. Wang, L. Wang, Y. Yin, P. G. Giresi, A. L. S. Chang, G. X. Y. Zheng, W. J. Greenleaf, H. Y. Chang, Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol.37, 925–936 (2019).
89
C. S. Smillie, M. Biton, J. Ordovas-Montanes, K. M. Sullivan, G. Burgin, D. B. Graham, R. H. Herbst, N. Rogel, M. Slyper, J. Waldman, M. Sud, E. Andrews, G. Velonias, A. L. Haber, K. Jagadeesh, S. Vickovic, J. Yao, C. Stevens, D. Dionne, L. T. Nguyen, A.-C. Villani, M. Hofree, E. A. Creasey, H. Huang, O. Rozenblatt-Rosen, J. J. Garber, H. Khalili, A. N. Desch, M. J. Daly, A. N. Ananthakrishnan, A. K. Shalek, R. J. Xavier, A. Regev, Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell178, 714–730.e22 (2019).
90
L. van der Maaten, Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res.15, 3221–3245 (2014) .
91
S. Nowotschin, M. Setty, Y.-Y. Kuo, V. Liu, V. Garg, R. Sharma, C. S. Simon, N. Saiz, R. Gardner, S. C. Boutet, D. M. Church, P. A. Hoodless, A.-K. Hadjantonakis, D. Pe’er, The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature569, 361–367 (2019).
92
A. T. L. Lun, K. Bach, J. C. Marioni, Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol.17, 75 (2016).
93
Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008).
94
M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014).
95
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in Python. J. Mach. Learning Res.12, 2825–2830 (2011).
96
H. Li, Tabix: Fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics27, 718–719 (2011).
97
D. Papailiopoulos, A. Kyrillidis, C. Boutsidis, “Provable deterministic leverage score sampling,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, 2014); pp. 997–1006.
98
M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.28, 27–30 (2000).
99
A. Hagberg, P. Swart, D. S. Chult, “Exploring network structure, dynamics, and function using networkx” (Los Alamos National Lab, 2008); https://www.osti.gov/biblio/960616.
100
A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. Fortunato, Finding statistically significant communities in networks. PLOS ONE6, e18961 (2011).
101
N. G. Steele, E. S. Carpenter, S. B. Kemp, V. R. Sirihorachai, S. The, L. Delrosario, J. Lazarus, E. D. Amir, V. Gunchick, C. Espinoza, S. Bell, L. Harris, F. Lima, V. Irizarry-Negron, D. Paglia, J. Macchia, A. K. Y. Chu, H. Schofield, E.-J. Wamsteker, R. Kwon, A. Schulman, A. Prabhu, R. Law, A. Sondhi, J. Yu, A. Patel, K. Donahue, H. Nathan, C. Cho, M. A. Anderson, V. Sahai, C. A. Lyssiotis, W. Zou, B. L. Allen, A. Rao, H. C. Crawford, F. Bednar, T. L. Frankel, M. Pasca di Magliano, Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer1, 1097–1112 (2020).
Information & Authors
Information
Published In
Science
Volume 380 | Issue 6645
12 May 2023
Copyright
Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Article versions
Submission history
Received: 17 June 2022
Accepted: 31 March 2023
Published in print: 12 May 2023
Permissions
Request permissions for this article.
Acknowledgments
We thank J. Simon and the MSKCC animal facility for technical support with animal colonies; MSKCC Flow Cytometry facility for support with FACS sorting experiments; the Single Cell and Imaging Mass Cytometry Platform at Goodman Cancer Research Centre; the members of the Sloan Kettering Institute’s Single Cell Analytics and Innovation Lab (SAIL) computational unit, and members of the Lowe and Pe’er laboratories for advice and discussions, in particular M. Setty and A. Chaikovsky for foundational scRNA-seq analyses and critically revising the final manuscript, respectively. We also thank J. Moffitt, B. Watson, J. Hurley, and S. Aviles for generously sharing their knowledge, protocols, and guidance to help us set up the multiplex smFISH platform in the lab and S. Gan and D. V. Kumar Yarlagadda for pivotal contributions to establishing our infrastructure for multiplex smFISH imaging.
Funding: This work was supported by Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center (GMTEC) funding and National Cancer Institute (NCI) Cancer Center Support grant P30 CA008748. C.B. is supported by a Ruth L. Kirschtein Predoctoral Fellowship (National Cancer Institute grant F31CA24690). D.A.C. is supported by La Caixa Junior Leader Fellowship LCF/BQ/PI20/11760006 and FERO-ASEICA grant BFERO2021 from the FERO Foundation and Spanish Cancer Research Association and Spanish Ministry of Science and Innovation grant PID2021-128102OA-I00. F.M.B. is supported by an Edward P. Evans Young Investigator Award. T.W. is supported by a fellowship from the DKFZ Clinician Scientist Program, supported by the Dieter Morszeck Foundation. SCIMAP is supported by the Fraser Memorial Trust and a McGill MI4 Platform grant. J.R. is a Howard Hughes Medical Institute Fellow of the Damon Runyon Cancer Research Foundation (grant DRG-2382-19). C.J.Z. is supported by National Institutes of Health grant R25 CA233208. S.W.L. is an investigator in the Howard Hughes Medical Institute and the Geoffrey Beene Chair for Cancer Biology. D.P. is an investigator in the Howard Hughes Medical Institute, is an Alan and Sandra Gerry Endowed Chair, and is supported by NCI grant U54 CA209975, National Institute of Child Health and Human Development DP1 grant HD084071, and the Starr Cancer Consortium.
Author contributions: Conceptualization: C.B., D.A.-C., S.W.L., D.P.; Data curation: C.B., D.A.-C., T.W., J.R., D.H., Y.X., V.G., Y.-J.H.; Formal analysis: C.B., T.W., D.H., Y.X., C.J.Z., R.K.; Funding acquisition: C.B., D.A.-C., S.W.L., D.P.; Investigation: C.B., D.A.-C., T.W., J.R., F.M.B., D.H., Y.X., Z.Z., H.-A.C., O.C., I.M., W.L., A.W., L.M., R.C.; Methodology: C.B., D.A.-C., S.W.L., D.P.; Resources: Z.-N.C., Y.W., D.Q.; Software: C.B.; Supervision: S.W.L., D.P.; Visualization: C.B., D.A.-C., T.W.; Writing – original draft: C.B., D.A.-C., T.N., S.W.L., D.P.; Writing – review & editing: T.W., J.R.
Competing interests: S.W.L. is a consultant and holds equity in Blueprint Medicines, ORIC Pharmaceuticals, Mirimus Inc., PMV Pharmaceuticals, Faeth Therapeutics, and Constellation Pharmaceuticals. D.A.-C. and S.W.L. are listed as the inventors for patent application (PTC/US2019/041670, internationally filing date 12 July 2019) covering methods for preventing or treating KRAS mutant pancreas cancer with inhibitors of type 2 cytokine signaling. D.P. is on the scientific advisory board of Insitro. T.W. reports stock ownership for Roche, Bayer, Innate Pharma, Illumina, and 10x Genomics, as well as research funding (not related to this study) from CanVirex AG, Basel Switzerland, and Institut für Klinische Krebsforschung GmbH, Frankfurt, Germany. C.B., D.A.-C., S.W.L., and D.P. are listed as inventors on a provisional patent application (63/390,075) related to methods and compositions for treating PDAC, for which Memorial Sloan Kettering Cancer Center is the applicant.
Data and materials availability: All sequencing data have been deposited at the Gene Expression Omnibus (GEO) under accession number GSE207943. An interactive data browser to plot gene expression trends on tSNE or FDL visualizations of scRNA-seq data is accessible at http://pdac-progression-browser.us-east-1.elasticbeanstalk.com. Code for data analysis is available at github (https://github.com/dpeerlab/pdac-progression) and Zenodo (70). KC-shIL33 ESCs for the production of EPO-GEMMs are available from S.W.L. upon request.
Authors
Affiliations
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
Roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Visualization, Writing – original draft, and Writing – review & editing.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
Roles: Conceptualization, Data curation, Formal analysis, Software, Validation, Visualization, and Writing – review & editing.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Conceptualization, Investigation, Methodology, Resources, Software, Validation, Visualization, Writing – original draft, and Writing – review & editing.
Francisco M. Barriga
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Role: Investigation.
Doron Haviv
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Roles: Formal analysis, Software, and Validation.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Roles: Formal analysis, Investigation, Resources, Software, Validation, Visualization, and Writing – review & editing.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Roles: Investigation, Methodology, and Resources.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Roles: Formal analysis, Software, and Validation.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Investigation, Methodology, and Resources.
Ojasvi Chaudhary
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Role: Investigation.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Role: Investigation.
Zi-Ning Choo
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Role: Software.
Vianne Gao
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
Roles: Data curation, Formal analysis, Investigation, and Software.
Wei Luan
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Alexandra Wuest
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Role: Investigation.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Formal analysis and Software.
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada.
Roles: Investigation, Methodology, and Resources.
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada.
Role: Methodology.
Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Data curation, Formal analysis, Resources, Software, and Visualization.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Institute of Biotechnology, Life Sciences Centre, Vilnius University, 02158 Vilnius, Lithuania.
Roles: Formal analysis, Investigation, and Methodology.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Project administration and Supervision.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Roles: Writing – original draft and Writing – review & editing.
Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
Roles: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, and Validation.
Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
Roles: Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Software, Supervision, Validation, Visualization, and Writing – original draft.
Funding Information
Fraser Memorial Trust
McGill MI4 Platform Grant
NIH Research Education Program: R25 CA233208
Edward P. Evans Young Investigator Award
DKFZ Clinician Scientist Program (Dieter Morszeck Foundation)
Alan and Sandra Gerry Endowed Chair
FERO-ASEICA: BFERO2021
Spanish Ministry of Science and Innovation grant: PID2021-128102OA-I00
La Caixa Junior Leader Fellowship: LCF/BQ/PI20/11760006
Notes
†
These authors contributed equally to this work.
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Cite as
- Cassandra Burdziak
- et al.
,
Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis.Science380,eadd5327(2023).DOI:10.1126/science.add5327
Export citation
Select the format you want to export the citation of this publication.
View Options
Check Access
Media
Figures
Multimedia
Tables
No comments: